\oint Jacobi Fields
variation field for family of geodesics
Jacobi fields "linearized" geodesic equations.
\ kernel of "index form", ie Hessian of E

Motivations

Egg.) In \mathbb{R}^{2}

Def n: Given a geodesic $Y(t):[a, b] \rightarrow M$, a vector field $V(t), t \in[a, b]$, along γ is said to be a Jacob: field if
(J)

$$
\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}} V+R\left(\gamma^{\prime}, V\right) \gamma^{\prime}=0
$$

Jacobi field eq"

Def": The index form of a geodesic $\gamma:[a, b] \rightarrow M$ is

$$
I(V, w):=\int_{a}^{b}\left\langle\nabla_{\gamma}, V, \nabla_{\gamma}, w\right\rangle-\left\langle R\left(\gamma^{\prime}, V\right) \gamma^{\prime}, w\right\rangle d t
$$

Note: $I(V, V)=E^{\prime \prime}(0)$ along the variation field V Symmetry of $R \Rightarrow I(V, W)$ is a symmetric bilinear form.

Prop: Let V be a Jacob: field along a geodesic $Y:[a, b] \rightarrow M$. THEN. $V \in{ }^{\prime \prime} \operatorname{ker}(I)^{\text {" }}$. ie

$$
I(V, W)=0 \quad \forall W \text { v.f. along } Y \text { st. } W(a)=0=W(b)
$$

In fast, the converse also hold.
Proof: Recall the index form

$$
I(V, w)==\int_{a}^{b}\left\langle\nabla_{\gamma}, V, \nabla_{\gamma}, w\right\rangle-\left\langle R\left(\gamma^{\prime}, V\right) \gamma^{\prime}, w\right\rangle d t
$$

Integrate by part, using W vanishes at the end pts.

$$
\begin{aligned}
I(V, w)= & =\int_{a}^{b}-\left\langle\nabla_{\gamma^{\prime}} \nabla_{\gamma^{\prime}}, V, w\right\rangle-\left\langle R\left(\gamma^{\prime}, V\right) \gamma^{\prime}, w\right\rangle d t \\
& =-\int_{a}^{b}\langle\underbrace{\nabla_{\gamma}, \nabla_{\gamma}, V+R\left(\gamma^{\prime}, V\right) \gamma^{\prime}}_{=0 \Leftrightarrow(J)}, w\rangle d t
\end{aligned}
$$

Suppose $\gamma_{S}:[a, b] \rightarrow M$ is a geodesic for EACH $\delta \in(-\varepsilon, \varepsilon)$
 system
IDEA: If we differentiate the geodesic eq z w.e.t. S at $S=0$. then we obtain the Jacobi field eq: (J) for $V:=\left.\frac{\partial Y}{\partial s}\right|_{S=0}$.
(Ex: Prove this:)

Lemma: (J) is a $2^{\text {nd }}$ order LINEAR ODE system.
Prof:
Fix O.N.B. $\left\{e_{\left.1, \ldots, e_{n}\right]}\right.$ of $T_{p} M$
parallel transport along γ

\Rightarrow obtain ON.B. $\left\{e_{1}(t), \ldots, e_{n}(t)\right]$ for $T_{\gamma(t)} M$
write $V(t)=\sum_{i=1}^{n} a_{i}(t) e_{i}(t)$.
for some for $a_{i}(t)$.
(J) $\nabla_{\gamma^{\prime}} \nabla_{\gamma}, V+R\left(\gamma^{\prime}, V\right) \gamma^{\prime}=0$

$$
\begin{aligned}
& \Leftrightarrow \quad \sum_{i=1}^{n} a_{i}^{\prime \prime}(t) e_{i}(t)+\sum_{i=1}^{n} a_{i}(t) \underbrace{R\left(\gamma^{\prime}, e_{i}(t)\right) \gamma^{\prime}}_{\sum_{j=1}^{n}\left\langle R\left(\gamma^{\prime}, e_{i}(t)\right) \gamma^{\prime}, e_{j}(t)\right\rangle e_{j}(t)}=0 \\
& \Leftrightarrow \quad a_{i}^{\prime \prime}(t)+\sum_{j=1}^{n} a_{i}(t) R\left(\gamma^{\prime}, e_{j}, \gamma^{\prime}, e_{i}\right)=0 \quad \forall i
\end{aligned}
$$

$2^{\text {nd }}$ order linear systems in $\boldsymbol{a}_{i}(t)$

Cor: (J) is uniquely solvable on $[a, b]$ for any given initial data $V(a)$ and $V^{\prime}(a):=\left(\nabla_{r}, V\right)(a)$.
depends lineboly
on initial alta
Note that: Any rector freed V along γ decompose:

$$
V=V_{\substack{i \\ \text { tangent } \\ \text { to } \gamma}}^{V_{i}^{\top}}+V_{\substack{\text { normal } \\ \text { to } \gamma}}^{\perp}
$$

$$
\text { (ire. } V^{+} \equiv 0 \text {) }
$$

Prop: Any tangential Jacobi field V along Y has the form

$$
V(t)=\underbrace{(A+B(t-a)}_{\text {lines in } t}) \gamma^{\prime}(t) \quad \text { for some constants } \begin{array}{|c|c}
A, B \in \mathbb{R}
\end{array}
$$

Pf: Solving uniquely (J) worth initial data

$$
V(a)=A \gamma^{\prime}(a) \text { and } V^{\prime}(a)=B \gamma^{\prime}(a) \text {. }
$$

Remark: This implies "tangential" Jacobi fields are NOT useful, but the "normal" Jacobi fields contains a lout of information about the geometry of $\left(M^{n}, g\right)$.

Prop: Suppose $\gamma_{s}:[a, b] \rightarrow M$ is a 1 -parameter family st. γ_{s} is a geodesic for EACH S $(-\varepsilon, \varepsilon)$.
THEN, the variation field $V:=\left.\frac{\partial \gamma}{\partial S}\right|_{s=0}$ satisfies (J).
Remark: The converge is also tome, ie Jawbi fields along geodesics are all "integrable". (Pf. HF)

Proof: Each γ_{s} is a geodesic

$$
\begin{array}{ll}
\Rightarrow & \nabla_{\gamma_{s}^{\prime}} \gamma_{s}^{\prime} \equiv 0 \quad \forall s \in(-\varepsilon, \varepsilon) \\
\Leftrightarrow & \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t} \equiv 0
\end{array}
$$

Consider

$$
\begin{aligned}
\nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial t}} \frac{\partial r}{\partial s} & \stackrel{t}{=} \nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}} \frac{\partial r}{\partial t} \\
& =\nabla_{\frac{\partial}{r s}} \nabla_{\frac{\partial}{\partial t}} \frac{\partial \gamma}{\partial t}+R\left(\frac{\partial \gamma}{\partial s}, \frac{\partial \gamma}{\partial t}\right) \frac{\partial \gamma}{\partial t}
\end{aligned}
$$

Evaluece at $s=0$,

$$
\begin{equation*}
\nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial r}} V+R\left(\frac{\partial \gamma}{\partial t}, V\right) \frac{\partial \gamma}{\partial t}=0 \tag{J}
\end{equation*}
$$

